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Abstract
A box-ball system with more than one kind of ball is obtained by the generalized
periodic discrete Toda equation (pd Toda equation). We present an algebraic
geometric study of the periodic Toda equation. The time evolution of the pd
Toda equation is linearized on the Picard group of an algebraic variety, and
theta function solutions are obtained.

PACS numbers: 02.30.Ik, 05.45.Yv
Mathematics Subject Classification: 37K15, 37K20

1. Preface

A cellular automaton (CA) is a discrete dynamical system in which the dependent variables
take on a finite set of discrete values. Although CAs evolve in time by simple evolution rules,
they often show very complicated behaviour [1].

The box-ball system (BBS) is an important CA in which finitely many balls move in
an array of boxes under a certain evolution rule [2, 3]. This discrete dynamical system
is obtained from a discrete analogue of the Toda equation through the limiting procedure
‘ultradiscretization’, and displays the behavioural characteristics of nonlinear integrable
equations [4, 5]. In fact, the BBS has soliton-like solutions and a large number of conserved
quantities [6, 7]. Moreover, the solution of the initial value problem of the periodic box-ball
system (pBBS) with one kind of ball has been obtained by ultradiscretizing the solution of the
periodic discrete Toda equation (pd Toda).

In 1999, Tokihiro, Nagai and Satsuma pointed out that the pBBS with M (M � 1) kind of
balls (and with capacity one) is obtained by ultradiscretizing the generalized periodic discrete
Toda equation [8]. Tokihiro and the author performed the ultradiscretization of theta function
solutions for M = 1 of the pd Toda [9]. It is to be expected that the solution of the initial
value problem of the pBBS with M kinds of balls can be obtained from the solution of the
generalized Toda equation, as was the case for M = 1.

1751-8113/08/115201+15$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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In this paper, we study the generalized pd Toda (M � 1):

I t+M
n = I t

n + V t
n − V t+1

n−1, (1.1)

V t+1
n = I t

n+1V
t
n

I t+M
n

, (1.2)

0 <

N∏
n=1

V t
n <

N∏
n=1

I t
n, (1.3)

with periodicity condition I t
n+N = I t

n, V
t
n+N = V t

n , where N, n, t ∈ N.
The time evolution of this system is linearized on the Picard group of an algebraic variety.

For example, the time evolution of pd Toda with M = 1 is linearized on Jacobi varieties of
hyperelliptic curves [10]. For general M, the algebraic curves which appear in the linearization
are more complicated than hyperelliptic curves.

These algebraic curves were analysed by Moerbeke and Mumford in 1978 [11]. In their
work, they clarify the algebro-geometric properties of the curves which are defined by the
so-called regular periodic operator matrices. Although our matrices are not always regular
operators, their results are essentially also applicable to our case.

The special feature of the discrete system (1.1)–(1.3) is that we can explicitly determine
the action of the unit time evolution t �→ t + 1 on the Picard group (proposition 2.16). Using
this result, we extended the theta function expression of the solution of pd Toda to the M � 1
case.

The paper is organized as follows. In section 2, we introduce a spectral curve associated
with the discrete system (1.1)–(1.3) and discuss its algebro-geometric properties. Our aim in
this section is to determine the actions of the index shift n �→ n+ 1 and the time shift t �→ t + 1
on a Picard group Picd(C) of this spectral curve C. In section 3, we give the theta function
expression (theorem 3.2) which is the extension of the formula obtained by Kimijima and
Tokihiro [10].

2. Spectral curve associated with pd Toda

2.1. The nature of the spectral curve

The pd Toda equations (1.1) and (1.2) are equivalent to the following matrix form:

Lt+1(y)Rt+M(y) = Rt(y)Lt (y), (2.1)

where Lt(y) and Rt(y) are given by

Lt(y) =

⎛⎜⎜⎜⎝
1 V t

N . . . 1/y

V t
1 1

. . .
. . .

...

V t
N−1 1

⎞⎟⎟⎟⎠ , Rt (y) =

⎛⎜⎜⎜⎜⎝
I t

1 1

I t
2

. . .

. . . 1
y I t

N

⎞⎟⎟⎟⎟⎠ ,

and y is a complex variable. Let us introduce a new matrix Xt(y) defined by

Xt(y) := Lt(y)Rt+M−1(y) · · · Rt+1(y)Rt (y). (2.2)

From (2.1) and (2.2), we obtain

Xt+1(y)Rt (y) = Rt(y)Xt(y), (2.3)

which implies that the eigenvalues of Xt(y) are conserved quantities under the time evolution.
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Lemma 2.1. Assume that {I t
n, V

t
n} satisfies pd Toda equation (1.1–1.3). Then,

∏N
n=1 V t

n =∏N
n=1 V t+1

n and
∏N

n=1 I t
n =∏N

n=1 I t+M
n .

Proof. By (2.3), det Xt(y) = y−1 × (
y − (−1)N

∏
n V t

n

) (∏
n I t

n − (−1)Ny
) × · · · ×(∏

n I t+M−1
n − (−1)Ny

)
does not change under the time evolution for any y. Then, the set

Ut := {∏n V t
n ,
∏

n I t
n, . . . ,

∏
n I t+M−1

n } satisfies Ut = Ut+1. From this equation, it follows that
{∏n V t

n ,
∏

n I t
n} = {∏n V t+1

n ,
∏

n I t+M
n }. There are following two cases: (i)

∏
n V t

n =∏n V t+1
n

and
∏

n I t
n = ∏

n I t+M
n , (ii)

∏
n V t

n = ∏
n I t+M

n and
∏

n I t
n = ∏

n V t+1
n . Note that we can

derive
∏

n V t
n �

∏
n V t+1

n in each case by (1.3). Using this inequality repeatedly, we obtain∏
n V t

n � · · · �
∏

n V t+M
n <

∏
n I t+M

n , which contradicts to the case (ii). �

Let �̃(x, y) := det (Xt (y) − xE) be the characteristic polynomial of Xt(y) (E is the unit
matrix). The equation

�̃(x, y) = 0 (2.4)

defines the affine part C̃ of its completion C. We call this projective curve C the spectral curve
C of the pd Toda equation. C is a (M + 1)-fold ramified covering over P

1:

px : C → P
1, (2.5)

and is also a N-fold ramified covering py : C → P
1. It goes without saying that C

is conserved under the time evolution and is completely determined by the initial values{
V 0

n , I 0
n , I 1

n , . . . , IM−1
n

}N
n=1. Note that C may fail to be smooth in certain situations. We

restrict ourselves to the case where C is smooth.

Remark 2.1. If M < N , the matrix Xt(y) is a N × N matrix and is of the form

X(y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(1)
1 α

(2)
2 · · · α

(M)
M 1 0

β1 α
(1)
2 α

(2)
3 · · · α

(M)
M+1 1 0

0 β2 α
(1)
3 α

(2)
4 · · · α

(M)
M+2 1 0

0
. . .

. . .
. . .

. . .
. . .

1

α
(M)
N

. . .
. . .

...

0 βN−1 α
(1)
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
1

α
(M)
1

. . .

...
. . .

α
(3)
1

. . .
. . .

α
(2)
1 α

(3)
2 · · · α

(M)
M−1 1 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× y +

⎛⎝ βN

⎞⎠× 1/y, (2.6)

where α
(i)
j , βj , (1 � i � M, 1 � j � N) are polynomials in

{
V t

n, I t
n, I

t+1
n , . . . , I t+M−1

n

}N
n=1.

In general, the (i, j)-component of X(y) is the essentially finite summation (X(y))i,j =∑∞
l=−1 α

(j−i+lM+1)

j yl , where α
(−1)
j = βj , α

(M+1)
j = 1 and α

(P )
j = 0(P < −1, P > M + 1).
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Remark 2.2. When the greatest common divisor (N,M) �= 1, this particular matrix (2.6) is
not a regular periodic difference operator which is analysed in [11].

We now analyse the points contained in C\C̃. We calculate the polynomial expression of
the function �̃(x, y) in x, y and y−1:

�̃(x, y) = A0(x)yM + A1(x)yM−1 + · · · + AM(x) + AM+1(x)y−1 = 0. (2.7)

For the analysis of the behaviour of C, we need to analyse Aj(x), (j = 0, 1, . . . , M + 1).
The following lemma is established by van Moerbeke and Mumford [11]. They analysed the
determinant det (X(y) − xE) by direct calculation.

Lemma 2.2. Let m := (N,M),N = mN1 and M = mM1. The polynomial Aj(x) is a
polynomial of degree kj satisfying

kj � jN

M
, (0 � j � M), kM+1 = 0. (2.8)

The equality in (2.8) holds if and only if the right-hand side is an integer. Moreover,
A0(x), AM1(x), A2M1(x), . . . , AmM1(x) are expressed as

ArM1(x) = (−1)M(N−M)+r

(
m

r

)
xrN1 + · · · , (r = 0, 1, . . . , m).

We start form the polynomial (2.7). Let γ := xN1y−M1 . By lemma 2.2, we obtain the
expression

y−mM1�̃(x, y) = (−1)M(N−M)

(
γ m −

(
m

1

)
γ m−1 +

(
m

2

)
γ m−2 + · · · + (−1)m

)
+ lower order terms when |x| , |y| → ∞

∼ (−1)M(N−M)(γ − 1)m.

This implies xN1y−M1 = γ ∼ 1 near (x, y) = (∞,∞). By (N1,M1) = 1, there exists the
local coordinate t equipped with the completion C ⊃ C̃ such that

x ∼ t−mM1 = t−M, y ∼ t−mN1 = t−N, (x, y) ∼ (∞,∞).

In particular, there exists only one point P ∈ C which is expressed as P = (∞,∞).
In a similar manner, there exists a point Q ∈ C which is expressed as Q = (∞, 0).

The local coordinate t near Q satisfies x ∼ t−1, y ∼ tN . Using these facts, the divisors
(x), (y) ∈ Div(C) are

(x) = −MP − Q + (a positive divisor on C̃), (2.9)

(y) = −NP + NQ. (2.10)

Remark 2.3. The existence of the unique point P(∞,∞) is a special property of X(y). In
fact, there exist m points Pj (x, y) = (∞,∞)(j = 1, . . . , m) on the algebraic curve associated
with a regular operator matrix [11].

Although the concrete calculations in [11] should be applied only to the case that X(y) is a
regular operator, these results are also applicable to our case on the condition that C is smooth.
Precisely, these calculations become true for our case by substituting

P1 = P2 = . . . = Pm(= P). (2.11)
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2.2. The eigenvector mapping

We now define the isolevel set TC as the set of matrices X(y) associated with the spectral curve
C. The following proposition is fundamental to the algebro-geometric method for integrable
systems.

Proposition 2.3. Let C be smooth and X(y) ∈ TC . There is a unique line bundle V ⊂ C ×
C

N s.t.

π−1(x, y) = {the eigenspace of X(y) corresponding to the eigenvalue x} ⊂ C
N,

for all (x, y) ∈ C\{x = 0,∞}, where C ×C
N ⊃ V

π−→ C is called the canonical projection.

By virtue of this proposition, we obtain the map

ϕC : TC → {U → P
N−1}U⊂C

X(y) �→ V ∨ ,

where V ∨ is the dual bundle of V . The section of V ∨ is a component of the eigenvector of
X(y). By the Grothendieck–Riemann–Roch theorem, it follows that

Im ϕC ⊂ Picd(C), d = g + N − 1, (2.12)

where g is the genus of C. (See [12]).

Definition 2.1. For smooth C, the eigenvector mapping associated with equation (2.3) is the
mapping

ϕC : TC → Picd(C)

defined as above. We shall call V ∨ the eigenvector bundle.

The eigenvector mapping is an important tool to analyse the various integrable systems
[13]. The following proposition is essential to our arguments in the present paper.

Proposition 2.4. The eigenvector mapping ϕC : TC → Picd(C) is an isomorphism to Im ϕC .

This proposition is a straightforward result of the following theorem provided by van Moerbeke
and Mumford.

Theorem 2.5. There is a one-to-one correspondence between the two sets of data: (a) a
multi diagonal matrix X(y) of the form (2.6) such that �̃(x, y) = 0 defines an affine part of a
smooth curve; (b) a smooth curve C, two points P,Q, two functions x, y on C and a divisor
D which satisfies

ϕC(X(y)) = D + (N − 1)Q. (2.13)

C has genus g = (N − 1)(M + 1) − m + 1

2
and degD = g.

Remark 2.4. Although equation 2.13 does not appear in the van Moerbeke and Mumfords
paper [11], we easily derive this equation from the relation (p 107)

(gk) + D �
N∑

i=k+1

Pi −
N−1∑
i=k

Qi, k = 1, 2, . . . , N − 1, (2.14)

where (g1, . . . , gN−1, 1)T is a section of the eigenvector bundle V ∨. In fact, (2.14) yields

(gk)∞ � D + (N − k)Q, (2.15)

5
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which implies d = deg (Im ϕC) � degD+N −1 = g +N −1. Because of the equality (2.12),
(g1)∞ must satisfy

(g1)∞ = D + (N − 1)Q. (2.16)

(2.15) and (2.12) imply (2.13).

Definition 2.2. A finite component ϕfn(X(y)) of the eigenvector mapping is a positive divisor
D of degree g which appears in (2.13).

2.3. The action of the evolutions on the eigenvector bundle

In this section, we represent the two actions—index evolution (n �→ n + 1) and time evolution
(t �→ t + 1) — on the eigenvector bundle.

Proposition 2.6. Let Dn be the divisor Dn = P − Q. Then the following diagram is
commutative.

TC → Picd(C)

n�→n+1 ↓ ↓ +Dn

TC → Picd(C)

Proof. Let us denote σ : n �→ n + 1. A straightforward calculation leads to

X(y)

⎛⎜⎜⎜⎝
v1

...

vN−1

vN

⎞⎟⎟⎟⎠ = x

⎛⎜⎜⎜⎝
v1

...

vN−1

vN

⎞⎟⎟⎟⎠ ⇔ σ−1(X(y))

⎛⎜⎜⎜⎝
y−1vN

v1

...

vN−1

⎞⎟⎟⎟⎠ = x

⎛⎜⎜⎜⎝
y−1vN

v1

...

vN−1

⎞⎟⎟⎟⎠ . (2.17)

It is enough to prove
(
y−1g−1

N−1

)
∞ − (g1)∞ ∼ −Dn. By (2.14), we have (ygN−1) + D �

(N −1)Q− (N −1)P . An argument similar to remark 2.4 allows to conclude
(
y−1g−1

N−1

)
∞ ∼

(ygN−1)∞ = D + (N − 1)P, which completes the proof. �

In order to determine the action of the time evolution on the eigenvector bundle, we
introduce the concepts of Bloch solution and transposed operator.

We identify the eigenvectors of X(y) with the Bloch solutions with multiplicity y of the
periodic infinite matrix

X̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . . α
(1)
N α

(2)
1 · · · α

(M)
M−1 1 0

βN α
(1)
1 α

(2)
2 · · · α

(M)
M 1 0

0 β1 α
(1)
2 α

(2)
3 · · · α

(M)
M+1 1 0

0
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which are the infinite vectors ṽ = (· · · , vn−1, vn, vn+1, · · ·)T such that

X̃ṽ = xṽ and vn+N = yvn. (2.18)

The first equation of (2.18) is equivalent to

βn−1vn−1 + α(1)
n vn + α

(2)
n+1vn+1 + · · · + α

(M)
n+M−1vn+M−1 + vn+M = xvn (2.19)

6
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for n ∈ Z
(
α

(j)

n+N = α
(j)
n , βn+N = βn

)
. Because the lhs of (2.19) is a linear combination of

vn−1, vn, . . . , vn+M−1, the Bloch solution associated with (x, y) ∈ C is also written as a linear
combination of ṽ(1), ṽ(2), . . . , ṽ(M+1), where

ṽ(1) = ( . . . , 1, 0, . . . , 0, v
(1)
M+2, v

(1)
M+3, . . .

)T
ṽ(2) = ( . . . , 0, 1, . . . , 0, v

(2)
M+2, v

(2)
M+3, . . .

)T
...

ṽ(M+1) = ( . . . , 0, 0, . . . , 1, v
(M+1)
M+2 , v

(M+1)
M+3 , . . .

)T
.

More precisely, let ψ(x, y) be the Bloch solution

ψ(x, y) = a1ṽ
(1) + a2ṽ

(2) + · · · + aM+1ṽ
(M+1), (2.20)

where ai = ai(x, y) and ṽ(i) = ṽ(i)(x).
Recalling (2.3) and proposition 2.3, the eigenvector vt (x, y) at time t satisfies

vt+1(x, y) = Rt(y) · vt (x, y). (2.21)

Equivalently, the Bloch solution ψt(x, y) satisfies

ψt+1(x, y) = R̃t · ψt(x, y), (2.22)

where

R̃t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

I t
N 1

I t
1 1

I t
2

. . .

. . . 1

I t
N

. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.20) and (2.22) yield

at+1
j = at

1

(
R̃t ṽ

(1)
)
j

+ · · · + at
M+1

(
R̃t ṽ

(M+1)
)
j
, j = 1, 2, . . . ,M + 1, (2.23)

where (v)j is a j th component of the vector v. Equation (2.23) is equivalent to(
at+1

1 , at+1
2 , . . . , at+1

M , at+1
M+1

)T = Ht · (at
1, a

t
2, . . . , a

t
M, at

M+1

)T
,

where

Ht =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I t
1 1

I t
2

. . .

. . . 1
I t
M 1

v
(1)
M+2 v

(2)
M+2 · · · v

(M)
M+2 I t

M+1 + v
(M+1)
M+2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.24)

Using this equation, we obtain(
vt+1

1 , vt+1
2 , . . . , vt+1

M , vt+1
M+1

)T = Ht · (vt
1, v

t
2, . . . , v

t
M, vt

M+1

)T
, (2.25)

where ψt(x, y) = ( . . . , vt
1, v

t
2, . . . , v

t
M+1, . . .

)T
.

7
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Lemma 2.7. For fixed generic x, the M + 1 Bloch solutions associated with x are linearly
independent.

Proof. For generic x, associated multiplicities yj (j = 1, 2, . . . , M + 1) of the Bloch solutions
are all distinct. �

Lemma 2.8. det Ht = (−1)M+1I t
1x.

This lemma is proved by an elementary calculation, which we shall give in the appendix.
Let F be the invertible sheaf associated with the eigenvector bundle V ∨. Let us consider

the direct image (px)∗F , where px is a projection of C defined by (2.5). The sheaf (px)∗F is
a locally free sheaf of rank M + 1. By lemma 2.7, the fibre of this direct sheaf is C

M+1.
Equation (2.25) is regarded as the time action to the space C

M+1. Recall that the
components of the Bloch solutions of X̃ are the section of the sheaf F . For x ∈ P

1, we
denote the kth component of the infinite vector ψt(x, yj ) by vt

jk(x), and ψt(x, yj ) by ψt
j (x).

By (2.20), the finite vectors ψ̂ t
j := (vt

j,1, v
t
j,2, . . . , v

t
j,M+1

)T
have the property{

ψt
j

}M+1
j=1 are linearly independent ⇐⇒ {

ψ̂ t
j

}M+1
j=1 are linearly independent. (2.26)

Equation (2.25) implies that(
ψ̂ t+1

1 , ψ̂ t+1
2 , . . . , ψ̂ t+1

M+1

) = Ht · (ψ̂ t
1, ψ̂

t
2, . . . , ψ̂

t
M+1

)
. (2.27)

On the other hand, lemmas 2.7, 2.8 and equation (2.26) imply that there exists at least one
vector ψ̂ t

j which satisfies

multxψ̂
t+1
j > multxψ̂

t
j , (2.28)

where multx(z1, z2, . . . , zN)T = min [multxz1, multxz2, . . . , multxzN ] and multxz is
multiplicity of x in z.

The same discussion can be repeated for the projection

py : C → P
1,

which is an N-fold ramified covering over P
1.

The following two facts are then obvious to prove.

Lemma 2.9. For fixed generic y, the N eigenvectors of Xt(y) are linearly independent.

Lemma 2.10. det Rt(y) is a polynomial of degree one in y.

Let us consider the direct image (py)∗F . From lemma 2.9 we then find that the fibre of
this direct image is C

N .
Equation (2.21) can be regarded as the time action to the space C

N . For fixed y, we
denote p−1

y (x) = {(x1, y), . . . , (xN , y)}. Then we obtain that

∃j s.t. mult(y−yt )vt+1(xj , y) > mult(y−yt )vt (xj , y), (2.29)

where det Rt(yt ) = 0
(⇔ yt = (−1)N

∏
n I t

n

)
.

2.4. The transposed operator

In this subsection, we introduce the transposed operator and give the proof of
proposition 2.16.

8
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The section of the eigenvector bundle V ∨ can be described as a rational function of x and
y. We denote the set of these sections by 	(V ∨). Let 
i,j := (−1)i+j × (i, j)th minor of
X(y) − xE. We have gk = 
N,k


N,N
(k = 1, 2, . . . , N − 1), where (g1, . . . , gN−1, 1)T ∈ 	(V ∨).

We are interested in the divisor (g1)∞ and hence, it is important to explore the common zeros
of 
N,1 and 
N,N .

Equation (2.3) is equivalent to

Xt(y)T Rt (y)T = Rt(y)T Xt+1(y)T . (2.30)

Let us define s := −t and A� := JAT J for a regular matrix A where

J =

⎛⎜⎜⎜⎝
0 1

. .
.

1
1 0

⎞⎟⎟⎟⎠ .

Then (2.30) becomes

X�
s+1R

�
s+1 = R�

s+1X
�
s . (2.31)

Note that the matrix X�(y) is also of the form (2.6). We call this new matrix X� the transposed
operator of X. A careful analysis of the eigenvector bundle of the transposed operator gives
more information on the original matrix X.

Lemma 2.11 (van Moerbeke, Mumford). (1) There exist positive regular divisors D1,D2 and
D3 such that

(
N,1/
N,N) = D1 + (N − 1)P − ϕfn(X) − (N − 1)Q, (2.32)

and

(
1,N/
N,N) = D2 + (N − 1)Q − D3 − (N − 1)P . (2.33)

Moreover, degDi = g(i = 1, 2, 3).
(2) The divisor (
N,N) satisfies

(
N,N) = ϕfn(X) + D3 − (NM − M − n + 1)P − NQ. (2.34)

Remark 2.5. Lemma 2.11 (1) and remark 2.16 imply that deg 
1,N


N,N
= g + N − 1, and that D2

and D3 do not have common points.

Lemma 2.12. ϕfn(X
�) = ϕfn(X

T ) = D2.

Proof. Note that X� and XT give the same spectral curve C. By definition, it follows that
XT (Jv) = x(Jv) ⇔ X�v = xv, which implies the first equality of the lemma.The second
equality is obtained from (2.13) and (2.33) and the fact that the (N, 1)th minor of X is the
(1, N)th minor of XT . �

Lemma 2.12 and equation (2.33) yield

D3 ∼ ϕfn(X
�) + (N − 1)Q − (N − 1)P ∼ ϕfn(X

�) − Q + P.

Using proposition 2.6, we obtain D3 ∼ ϕfn(σ (X�)) = ϕfn((σ
−1X)�). In fact, by virtue of the

Riemann–Roch theorem, we obtain the following stronger result:

D3 = ϕfn((σ
−1X)�)

because D3 is a regular divisor of degree g.

9
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Proposition 2.13. 
N,N has 2g zeros in C\{x = ∞}. And the corresponding divisor is

ϕfn(X) + ϕfn((σ
−1X)�).

As a corollary of this proposition, the zeros of 
1,1,
1,N and
N,1 are also determined:

Corollary 2.14. 
1,1,
1,N ,
N,1 have 2g zeros in C\{x = ∞}, respectively. The
corresponding divisors are


1,1 : ϕfn(σ
−1X) + ϕfn(X

�)


1,N : ϕfn(X) + ϕfn(X
�)


N,1 : ϕfn(σ
−1X) + ϕfn((σ

−1X)�).

(2.35)

Proof. The divisor of 
1,1 is obtained from 
N,N by the change of the index: n → n − 1.
The remaining divisors are determined by the identity 
1,1
N,N = 
1,N
N,1 and (2.16). �

Example. (N = 4,M = 2)

X =

⎛⎜⎜⎜⎜⎜⎝
α

(1)
1 α

(2)
2 1 β41/y

β1 α
(1)
2 α

(2)
3 1

y β2 α
(1)
3 α

(2)
4

α
(2)
1 y y β3 α

(1)
4

⎞⎟⎟⎟⎟⎟⎠ , X� =

⎛⎜⎜⎜⎜⎜⎝
α

(1)
4 α

(2)
4 1 β41/y

β3 α
(1)
3 α

(2)
3 1

y β2 α
(1)
2 α

(2)
2

α
(2)
1 y y β1 α

(1)
1

⎞⎟⎟⎟⎟⎟⎠ ,

σ−1X =

⎛⎜⎜⎜⎜⎜⎝
α

(1)
4 α

(2)
1 1 β31/y

β4 α
(1)
1 α

(2)
2 1

y β1 α
(1)
2 α

(2)
3

α
(2)
4 y y β2 α

(1)
3

⎞⎟⎟⎟⎟⎟⎠ , (σ−1X)� =

⎛⎜⎜⎜⎜⎜⎝
α

(1)
3 α

(2)
3 1 β31/y

β2 α
(1)
2 α

(2)
2 1

y β1 α
(1)
1 α

(2)
1

α
(2)
4 y y β4 α

(1)
4

⎞⎟⎟⎟⎟⎟⎠ .

The correspondence X ↔ (σ−1X)� is equivalent to the correspondence

α
(1)
i ↔ α

(1)
4−i , α

(2)
i ↔ α

(2)
1−i , βi ↔ β3−i .

Our aim is to analyse the distribution of common zeros of 
N,1 and 
N,N . This set of
zeros has the following characteristic property.

Lemma 2.15.

{The common zeros of {
N,1,
N,N }} = {The common zeros of {
N,k}k=1,2,...,N }.

Proof. Consider the following open subset on C: C̃ = C\{x = ∞}. By (2.15) and
(2.16), for k � 2, we obtain (gk)∞|C̃ < (g1)∞|C̃ . This is equivalent to (
N,k/
N,N)∞ <

(
N,1/
N,N)∞, which proves the lemma. �

Using the preceding calculations, we come to the linearization result.

Proposition 2.16. Let D(j)(j = 1, 2, . . . ,M) be the divisors D(j) = Aj − P, where
Aj = (0, yj ) and yj is the complex number which satisfies yj = (−1)N

∏
n I

j
n . If t ≡ j

(mod M), the following diagram is commutative.

TC → Picd(C)

t �→t+1 ↓ ↓ +D(j)

TC → Picd(C)

10
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Proof. Recall that
∏

n I t
n = ∏

n I t+M
n by lemma 2.1. Let t ≡ j (mod M). Proposition 2.13

and corollary 2.14 imply

{Common zeros of 
N,1 and 
N,N } = ϕfn((σ
−1X)�).

Using this fact, it becomes clear that the equations (2.28) and (2.29) give the time evolution
action of the transposed operator X�. In fact, by virtue of lemma 2.15, equation (2.28) requires
the existence of a point (x, y) = (0, y ′) which becomes the common zero of 
N,1 and 
N,N

when t �→ t + 1. Then (2.29) also requires the existence of a point (x, y) = (x ′, yj ) which
becomes the common zero of 
N,1 and 
N,N . Using the same argument about poles, it follows
that the divisor D′

(j) = P − Aj obeys the relation: ϕfn(X
�
t+1) = ϕfn(X

�
t ) + D′

(j). Recalling
(2.31), the two time evolutions defined by Xt and X�

s are opposite: s = −t . Hence, the divisor
D(j) = −D′

(j) = Aj − P gives the time evolution of original system. �

3. Theta function solutions

3.1. The distribution of the points ϕfn(X)

Let ϕfn(X) = P1 + · · · + Pg, Pj = (xj , yj ) ∈ C. We are interested in the numbers
xj ∈ C, (j = 1, 2, . . . , g). Now, consider the resultant of the polynomials [14]
�(x, y) = y det (X(y) − xE) and 
N,N as polynomials in y. Let us denote this resultant by
Resty(�,
N,N) =: R(x), which is a polynomial in x. More precisely, R(x) is an element of
C
[
α

(1)
1 , . . . , α

(1)
N ; . . . ;α

(M)
1 , . . . , α

(M)
N ;β1, . . . , βN

]
[x]. From proposition 2.13, it follows that

degx R(x) = 2g.
We also consider the resultant S(x) := Resty(�,
1,N ). Due to proposition 2.13

and corollary 2.14 the common divisor of R(x) and S(x) is an element of
C
(
α

(1)
1 , . . . , α

(1)
N ; . . . ;α

(M)
1 , . . . , α

(M)
N ;β1, . . . , βN

)
[x], the degree of which (as a polynomial

in x) is equal to g. Multiplying divisors (if needed), we obtain the monic polynomial

ϒ(x) ∈ C
(
α

(1)
1 , . . . , α

(1)
N ; . . . ;α

(M)
1 , . . . , α

(M)
N ;β1, . . . , βN

)
[x],

the roots of which are the common roots of R(x) and S(x), i.e., the common roots of 
1,N and

N,N . Recalling that the set of the common zeros of 
N,N and 
1,N contained in C\{x = ∞}
is {P1, . . . , Pg}, we conclude

degx ϒ(x) = g, ϒ(xi) = 0, i = 1, 2, . . . , g. (3.1)

3.2. Theta function solutions

For a complex curve (or Riemann surface) C of genus g, one usually considers a canonical
basis of H1(C, Z). We denote the canonical basis by a1, . . . , ag; b1, . . . , bg ∈ H1(C, Z). Let
ω1, . . . , ωg be the holomorphic differential of C which satisfies

∫
aj

ωi = δj,i . A period matrix

of the Riemann surface C is a g × g matrix B = ( ∫
bj

ωi

)
. Let θ(z, B) be the theta function;

C
g → C, and A : Picg ∼→ J (C)(:= C

g/(Zg + BZ
g)) the Abelian mapping. The following

theorem is a classical and fundamental result.

Theorem 3.1 (Riemann). Let C be a Riemann surface of genus g, and let D = P1 + · · · + Pg

be a regular positive divisor. Then the function

F(p) = θ(A(p) − A(D) − K, B), p ∈ C

has exactly g zeros p = P1, . . . , Pg on C, where K is the Riemann constant of C.

11
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To obtain the solution to the pd Toda equation, we consider the following integral:

I = 1

2π i

∫
∂C◦

x(p)
dF(p)

F (p)

(
=:

1

2π i

∫
∂C◦

dZ(p)

)
. (3.2)

Here the integral path ∂C◦ goes along the edge of the simply connected domain C◦ obtained
from the Riemann surface by cutting it along a1, . . . , ag; b1, . . . , bg .

The integral I can be rewritten as

I = 1

2π i

g∑
k=1

(∫
ak

+
∫

a−1
k

+
∫

bk

+
∫

b−1
k

)
dZ(p)

= 1

2π i

g∑
k=1

(∫
ak

{dZ(p) − dZ(p + bk)} +
∫

bk

{dZ(p) − dZ(p + ak)}
)

.

Recalling the classical fact F(p + ak) = F(p), F (p + bk) = exp(−2π i(A(p) − A(D) −
K)k)F (p) and d(A(p))k = ωk(p), the integral I is transformed to

I =
g∑

k=1

∫
ak

x(p)ωk(p). (3.3)

On the other hand, by the residue theorem, the integral I also has the expression:

I =
g∑

i=1

x(Pi) + ResP (dZ) + ResQ(dZ). (3.4)

Let tP and tQ be local coordinates around P and Q, respectively. These satisfy

x ∼ 1/(tP )M, (neighbour of P), x ∼ 1/tQ, (neighbour of Q).

In a neighbourhood of P, one has

dZ ∼ 1

(tP )M
d log F

dtP
dtP = 1

(tP )M

g∑
l=1

(∂l log F)

(
d(A)l

dtP

)
dtP . (3.5)

To calculate the residue of the differential (3.5), we explore the behaviour of d(A)l
dtP

dtP = ωl

around points P and Q. Let cl := ResP (ωl/(tP )M). Then we obtain the expression

ResP (dZ) =
g∑

l=1

cl(∂l log(F (P ))). (3.6)

In the similar manner, we also conclude

ResQ(dZ) =
g∑

l=1

c′
l (∂l log(F (Q))), (3.7)

where c′
l := ResQ(ωl/tQ).

By (3.3) and (3.4), we obtain
g∑

l=1

x(Pl) =
g∑

l=1

∫
al

x(p)ωl(p) −
g∑

l=1

cl(∂l log(F (P ))) −
g∑

l=1

c′
l (∂l log(F (Q))). (3.8)

Using this equation, we obtain the following theorem which is a generalization of the preceding
result concerning the theta function solution to the pd Toda (M = 1) equation [10] and which
is the main theorem in the present paper.

12
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Theorem 3.2. Let ϒ(x) be the monic polynomial of degree g obtained by (3.1):

ϒ(x) = xg − a1x
g−1 + · · · + (−1)gag,

with a1, . . . , ag ∈ C
(
α

(1)
1 , . . . , α

(1)
N ; . . . ;α

(M)
1 , . . . , α

(M)
N ;β1, . . . , βN

)
. Then we find

a1 =
g∑

l=1

∫
al

x(p)ωl(p) −
g∑

l=1

cl{∂l log θ(nk + ν(t) + c0, B)}

−
g∑

l=1

c′
l{∂l log θ((n + 1)k + ν(t) + c0, B)}, (3.9)

where cl = ResP (ωl/(tP )M), c′
l = ResQ(ωl/tQ),k = A(P − Q), c0 = A(Q −D0 + �), and

ν(pM + q) = pA(A1 + · · · + AM) + A(A1 + · · · + Aq) − (pM + q)A(Q)(1 � q � M). Here
� is the theta divisor: A(�) = −K. The divisor D0 is the initial value ϕfn(Xt=0(y)) = D0.
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Appedix. Proof of lemma 2.8

In this section, we give the proof of lemma 2.8. Let

Uk := Rt+k−1(y)Rt+k−2(y) . . . Rt (y), 1 � k � M.

Define the row vector u(k) = (
u

(k)
1,1, u

(k)
1,2, . . . , u

(k)
1,N

)
, where Uk = (

u
(k)
i,j

)
, and the following

homomorphism of rings:

σ : Z
[{

V t
n, I t

n

}
n∈Z

]→ Z
[{

V t
n, I t

n

}
n∈Z

]; V t
n �→ V t

n+1, I
t
n �→ I t

n+1.

We rewrite the j th component of u(k) as u
(k)
j for short. By definition of Rt(y), we obtain

u
(k+1)
j = σ

(
u

(k)
j−1

)
+ I t+k

1 u
(k)
j ,

(
u

(k)
−1 = 0

)
. (A.1)

On the other hand, the second row of the matrix Xt(y), which is of the form(
β1, α

(1)
2 , α

(2)
3 , . . . , αM

M+1, 1, 0, . . . , 0
)
,

satisfies β1 = V t
1 u

(M)
1 , α

(j)

j+1 = σ
(
u

(M)
j

)
+ V t

1 u
(M)
j+1 . Figure A1 displays the algorithm which we

shall use to obtain the row vector u(k) expressed by (A.1).
Let us introduce the signs ↙ and ↘ to describe the terms which appear in the

figure A1. Let us define the set of arrows Ar := {↙,↘} and the set of sequences
Arr := {(a1, a2, . . . , ar )|aj ∈ Ar}, r ∈ N. We define the map of sets {·} :

⋃
r Arr →

Z
[{

I t+l
n

}
1�n�N,1�l�M

]
as follows. For r = 0, define {∅} := 1. If {a1, a2, . . . , ar} ∈

Z
[{

I t+l
n

}
n,l

]
is given, we define {a1, a2, . . . , ar , ar+1} by

{a1, . . . , ar ,↙} := I t+r
1 {a1, a2, . . . , ar}, {a1, . . . , ar ,↘} := σ({a1, . . . , ar})

inductively. For example, {↙} = I t
1, {↙↙} = I t

1I
t+1
1 , {↙↘} = I t

2, {↘↙} = I t+1
1 . By

definition, the j th component of u(k) satisfies

u
(k)
j =

∑
�↘=j−1,�↙=k−j+1

{a1, . . . , ak}. (A.2)
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1

It1 1

It1I
t+1
1 It2 + It+1

1 1

It1I
t+1
1 It+2

1 It2I
t+1
2 + It2I

t+2
1 + It+1

1 It+2
1 It3 + It+1

2 + It+2
1 1

×It1

×It+1
1 ×It+1

1

×It+2
1 ×It+2

1 ×It+2
1

σ

σ

σ

σ

Figure A1. The j + 1th row of this diagram displays the first j + 1 non-zero components of the
row vector u(j).

Lemma A.1. {↙, a2, . . . , ak} = I t
l+1{↘, a2 . . . , ak}, where l = �{the arrow ↘ included in

{a2, . . . , ak}}.
Proof. We prove the equation by induction respected to k. If k = 1, the equation is
equivalent to {↙} = I t

1{↘} which is true by definition. Let k � 2. If ak =↙, we obtain
lhs = I t+k−1

1 {↙, a2, . . . , ak−1} and rhs = I t+k−1
1 I t

l+1{↘, a2, . . . , ak−1}. By assumption of
induction, it follows that lhs = rhs. We also prove the equation in the similar manner if
ak =↘. �

Lemma A.2. u
(M)
1 +

∑M
j=1 (−1)ju

(M)
j+1 I t

1 · · · I t
j = 0.

Proof.

u
(M)
1 +

M∑
j=1

(−1)ju
(M)
j+1 I t

1 · · · I t
j

= {↙↙ · · · ↙} +
M∑

j=1

(−1)j

⎡⎣ ∑
�↘=j,�↙=M−j

{↙, ∗, . . . , ∗} + {↘, ∗, . . . , ∗}
⎤⎦ I t

1 · · · I t
j

= {↙↙ · · · ↙} +
M−1∑
j=1

(−1)j
∑

�↘=j+1,�↙=M−j−1

{↘, ∗}I t
1 · · · I t

j I
t
j+1

+
M∑

j=1

(−1)j
∑

�↘=j,�↙=M−j

{↘, ∗}I t
1 · · · I t

j (∵ Lemma A.1)

= {↙↙ · · · ↙} − I1{↘↙ · · · ↙}
= 0 �

Lemma A.3.
∑M

j=1 (−1)jσ
(
u

(M)
j

)
I t

1 · · · I t
j = (−1)MI t

1 · · · I t
M+1.

Proof. We start from lemma A.2.

0 = σ

⎛⎝u
(M)
1 +

M∑
j=1

(−1)ju
(M)
j+1 I t

1 · · · I t
j

⎞⎠ = σ
(
u

(M)
1

)
+

M∑
j=1

(−1)jσ
(
u

(M)
j+1

)
I t

2 · · · I t
j+1.
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Multiplying I1, we obtain

0 =
M+1∑
j=1

(−1)jσ
(
u

(M)
j

)
I t

1 · · · I t
j =

M∑
j=1

(−1)jσ
(
u

(M)
j

)
I t

1 · · · I t
j + (−1)M+1I t

1 · · · I t
M+1,

which complete the proof. �

Proof of lemma 2.8. Calculate det Ht by the definition of Ht (2.24). The components
v

(j)

M+2, (j = 1, 2, . . . ,M + 1) are rewritten as

v
(1)
M+2 = −β1, v

(2)
M+2 = x − α

(1)
2 , v

(j)

M+2 = −α
(j−1)

j , (j = 3, 4, . . . , M + 1),

by virtue of (2.19). The expansion of the determinant with respect to the (M + 1) st row yields

det Ht = (−1)M
{− β1 +

(
α

(1)
2 − x

)
I t

1 − α
(2)
3 I t

1I
t
2

+ · · · + (−1)M
(
I t
M+1 − α

(M)
M+1

)
I t

1 · · · I t
M

}
= (−1)M

⎧⎨⎩−β1 − xI t
1 −

M∑
j=1

(−1)jα
(j)

j+1I
t
1 · · · I t

j + (−1)MI t
1 · · · I t

MI t
M+1

⎫⎬⎭
= (−1)M

{
− V t

1 u
(M)
1 − xI t

1 −
M∑

j=1

(−1)j {σ(u
(M)
j ) + V t

1 u
(M)
j+1 }I t

1 · · · I t
j

+ (−1)MI t
1 · · · I t

MI t
M+1

}
= (−1)M+1I t

1x. (∵ Lemma A.2 and A.3) �
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